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Abstract. In the unitary gauge the unphysical degrees of freedom of spontaneously broken gauge theories
are eliminated. The Feynman rules are simpler than in other gauges, but it is non-renormalizable by the
rules of power counting. On the other hand, it is formally equal to the limit ξ → 0 of the renormalizable
Rξ-gauge. We consider perturbation theory to one-loop order in the Rξ-gauge and in the unitary gauge
for the case of the two-dimensional abelian Higgs model. An apparent conflict between the unitary gauge
and the limit ξ → 0 of the Rξ-gauge is resolved, and it is demonstrated that results for physical quantities
can be obtained in the unitary gauge.

1 Introduction

For theories of interacting gauge and Higgs fields with
spontaneously broken gauge symmetry two well-known
gauges are the unitary gauge (U-gauge) [1] and the renor-
malizable Rξ-gauge [2,3]. In the U-gauge the gauge-variant
transversal part of the Higgs field has been eliminated and
the Lagrangian only contains physical degrees of freedom.
Although the Feynman rules in the U-gauge are simpler, it
is usually not used for perturbative calculations. The rea-
son for this is the fact that for large momenta the gauge
field propagator grows faster than in the Rξ-gauge. Con-
sequently the model in the U-gauge appears to be un-
renormalizable by the usual power-counting rules. In the
Rξ-gauge, on the other hand, more fields have to be taken
into account, namely the unphysical components of the
Higgs field and the ghost field. The Feynman rules are
more complicated and there are more diagrams to be cal-
culated. The advantage is that the model in the Rξ-gauge
is manifestly renormalizable.

With the help of Slavnov–Taylor identities it can for-
mally be shown that renormalized on-shell quantities are
independent of the gauge [3–5]. Such physical quantities
should therefore in principle be calculable in the U-gauge.
It appears, however, that the cancellation of divergent
terms is a delicate matter. In practice, calculations in the
unitary gauge have sometimes led to results which are in
conflict with those obtained in other gauges [6, 7].

In this paper we address the possibility of doing per-
turbation theory in the U-gauge and the relation between
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the Rξ-gauge and the U-gauge. For simplicity we restrict
ourselves to the two-dimensional abelian Higgs model. It
contains all the features we would like to discuss, but the
explicit calculations are easier than in non-abelian models
in four dimensions. We perform the perturbative calcula-
tions of off-shell quantities on the one-loop level. Ultra-
violet divergencies are treated by means of dimensional
regularization, where the number of dimensions of space-
time are taken to be D = 2 − 2ε.

Formally, the U-gauge is obtained by taking the limit
ξ → 0 of the Rξ-gauge. Applying this prescription naively,
results are obtained which do not coincide with those of the
U-gauge. We discuss the origin of this discrepancy, which
is related to the fact that the limits ε → 0 and ξ → 0
are not interchangeable, and discuss how to go from the
Rξ-gauge to the U-gauge properly.

We would like to point out that renormalization of the
four-dimensional abelian Higgs model in the unitary gauge
has been discussed by Sonoda [8] with the help of a suitable
choice of interpolating fields.

2 The two-dimensional abelian Higgs model

The model contains a real vector field Aµ(x) and a complex
scalar Higgs field φ(x). We shall consider the theory in a
two-dimensional space-time with a Euclidean metric. The
Lagrangian is

L =
1
4
FµνFµν + |Dµφ|2 + V (φ), (1)

where

Fµν = ∂µAν − ∂νAµ , (2)
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Dµ = ∂µ − ieAµ , (3)

V (φ) = −m2

2
|φ|2 +

g

6
|φ|4 , (4)

and e and g are coupling constants. The potential is of the
mexican hat type with its minima at

|φ| =
v√
2

, where v2 =
3m2

g
. (5)

The Lagrangian is invariant under local gauge transforma-
tions

φ(x) → φ′(x) = e−iα(x)φ(x) , (6)

Aµ(x) → A′
µ(x) = Aµ(x) − 1

e
∂µα(x) . (7)

2.1 Unitary gauge

The scalar field can be written in the form

φ(x) = ρ(x) eiω(x) (8)

with real ρ(x) and ω(x). The U-gauge is obtained by choos-
ing the gauge transformation function as α(x) = ω(x). The
transformed fields are then

φ′(x) = ρ(x), (9)

A′
µ(x) = Aµ(x) − 1

e
∂µω(x) .= Bµ(x), (10)

F ′
µν = ∂µBν − ∂νBµ . (11)

They represent the gauge invariant physical degrees of free-
dom. In terms of ρ(x) the potential can be expressed as

V (ρ) =
g

6

(
ρ2 − v2

2

)2

+ const. (12)

After expanding the scalar field around the minimum of
the potential as

ρ(x) =
1√
2
(v + σ(x)), (13)

the Lagrangian reads, up to an irrelevant constant,

L =
1
4
FµνFµν +

1
2
e2v2B2

µ +
1
2
(∂µσ)2 +

m2

2
σ2

+
gv

3!
σ3 +

g

4!
σ4 + e2vσB2

µ +
1
2
e2σ2B2

µ . (14)

One can read off that the Higgs scalar σ has mass m and
the vector field Bµ is massive with mass mv = ev. From
the Lagrangian the following Feynman rules are obtained.

• scalar propagator:

∆σ(k) = (m2 + k2)−1

=

• gauge field propagator:

∆µν(k) = (m2
v + k2)−1

(
δµν +

kµkν

m2
v

)

= µ ν

• σ3-vertex: −gv =

• σ4-vertex: −g =

• σ-B2
µ-vertex:

−2e2vδµν =

µ ν

• σ2-B2
µ-vertex:

−2e2δµν =

µ ν

With these Feynman rules one can write down expres-
sions for various Green functions. In order not to overlook
subtleties, it should be taken into account, however, that
the functional integral measure for the scalar field σ(x) is
not the standard one. For each point x the measure is, up
to a constant factor,

d(Re φ(x)) d(Im φ(x)) = ρ(x)dρ(x)dω(x) . (15)

The functional integral measure for the scalar field is there-
fore ∏

x

(v + σ(x)) dσ(x) .= det J
∏
x

dσ(x), (16)

with [9]
J(x, y) = δ(x − y) ((v + σ(x))) . (17)

One can try to argue that detJ does not affect the pertur-
bative results, at least in dimensional regularization [10].
But it is safer to keep this term for the moment. With the
help of ghost fields we can write

det J =
∫

DcDc̄ e−Sgh , (18)

with
Sgh = e2v

∫
dx c̄(x) ((v + σ(x))) c(x) . (19)

The prefactor e2v has been chosen such that comparison
with similar terms in the Rξ-gauge is facilitated. The La-
grangian gets the additional ghost terms

m2
v c̄c + e2v σ c̄c, (20)
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and the Feynman rules are augmented by
• ghost propagator: (m2

v)−1 =

• ghost-σ-vertex: −e2v =

In the one-loop order the Green’s functions of the scalar
and vector fields get additional contributions from ghost
loops. These are proportional to∫

dDk

(2π)D

1
m2

v

. (21)

In dimensional regularization these contributions vanish
due to the rule [11]

∫
dDk

(2π)D
(k2)α = 0 , for α ≥ 0 . (22)

This justifies one neglecting the measure factor det J . The
ghost fields introduced above are, however, useful in the
discussion of the relation between the U-gauge and the
Rξ-gauge.

2.2 Rξ-gauge

In the Rξ-gauge the Higgs field is decomposed into its real
and imaginary parts as

φ(x) =
1√
2
(v + φ1(x) + iφ2(x)) . (23)

Expanding the Lagrangian in terms of these fields, a mixing
term between Aµ(x) and φ2(x) appears on the quadratic
level. The Rξ-gauge is specified by the gauge fixing function

F = ∂µAµ − ev

ξ
φ2 , (24)

where ξ > 0 is a real parameter. The gauge fixing term to
be added to the Lagrangian is

Lgf =
ξ

2
F 2 . (25)

It eliminates the Aµ(x)–φ2(x) mixing term. The gauge
fixing procedure yields the Faddeev–Popov determinant
det MF , where

MF = −∂2
µ +

e2v

ξ
(v + φ1) . (26)

As usual it can be represented in terms of ghost fields via
a ghost Lagrangian

Lgh = ξ c̄(x)MF c(x) (27)

= −ξ c̄(x)∂2
µc(x) + m2

v c̄(x)c(x) + e2v φ1(x)c̄(x)c(x) .

By suitable normalization of the ghost fields the prefactor
ξ has been chosen for later convenience. In contrast to the
case of QED the ghost term cannot be neglected since it
contains an interaction between the Higgs and the ghost
fields.

From the total Lagrangian the following Feynman rules
are derived. In order to save space, the graphical repre-
sentations are shown only for new types of propagators
or vertices.
• φ1 propagator: ∆φ1(k) = (m2 + k2)−1

• φ2 propagator:

∆φ2(k) =
(

m2
v

ξ
+ k2

)−1

=

• gauge field propagator:

∆µν, ξ(k) = (m2
v + k2)−1

(
δµν − kµkν

k2

)

+
1
ξ

(
m2

v

ξ
+ k2

)−1
kµkν

k2

• ghost propagator: ∆c(k) = (m2
v + ξk2)−1

• φ3
1-vertex: −gv

• φ4
1-vertex: −g

• φ1φ
2
2-vertex: − gv

3

• φ2
1φ

2
2-vertex: − g

3

• φ4
2-vertex: −g

• A2
µφ1-vertex: −2e2vδµν

• Aµφ1φ2-vertex: −ie(k1 − k2)µ = k1 k2

µ• A2
µφ2

1-vertex: −2e2δµν

• A2
µφ2

2-vertex: −2e2δµν

• φ1c̄c-vertex: −e2v
Comparing with the Feynman rules of the U-gauge we

observe that in the limit ξ → 0 the propagators and ver-
tices involving the fields φ1, Aµ and c̄, c go over to those
of the fields σ, Bµ and c̄, c in the U-gauge. Moreover the
φ2 propagator

∆φ2(k) =
ξ

m2
v + ξk2

ξ→0−→ 0 (28)

vanishes in this limit. In this sense the U-gauge formally
corresponds to the ξ → 0 limit of the Rξ-gauge [3, 10].
Indeed, in this limit the gauge fixing function forces the
imaginary component φ2 of the scalar field to vanish, which
corresponds to the U-gauge.

Two other special cases are known in the literature.
The limit ξ → ∞ yields the Landau gauge, in which the
vector propagator is purely transversal. The case ξ = 1 is
the Feynman gauge, which has the simplest Feynman rules.
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3 Perturbation theory

In this section we consider Green’s functions of the abelian
Higgs model in perturbation theory in one-loop order. For
the treatment of divergencies we employ dimensional reg-
ularization with D = 2 − 2ε dimensions. The coupling
constants are replaced by

e → µεe ,

g → µ2εg ,

v → µ−εv , (29)

where µ is an arbitrary mass scale.
The one-loop corrections are of order g or e2 relative to

the tree level terms. As usual, fractions e2/g are counted
as being of order 1. Two-loop and higher corrections are
of order g2, ge2 or e4.

3.1 Scalar propagator

Let us start with the scalar propagator. We write its inverse
as

G−1(p) = m2 + p2 + Σ(p) , (30)

where the self-energy Σ(p) is given by the sum of one-
particle irreducible, amputated propagator diagrams. For
the σ propagator in the U-gauge we obtain

−Σσ(p2)

=




p

+

p

+

p

+

p

+
p

+
p




amp

=
1
4π

{
g

[(
1 − p2

3m2

)(
1
ε

− γ − ln
m2

4πµ2

)

+
p2

3m2 ln
3e2

g

+
3m2

2
√

p4 + 4p2m2
ln

p2 + 2m2 +
√

p4 + 4p2m2

p2 + 2m2 −
√

p4 + 4p2m2

]

+e2

[
2
(

1
ε

− γ − 2 − ln
m2

v

4πµ2

)
(31)

+
(p2 + 2m2

v)2

2m2
v

√
p4 + 4p2m2

v

ln
p2 + 2m2

v +
√

p4 + 4p2m2
v

p2 + 2m2
v −√p4 + 4p2m2

v

]}
,

where γ = 0.57721 . . . is Euler’s constant.
From the propagator the renormalized mass and the

wave function renormalization constant can be obtained.
We shall consider two schemes here. In the first scheme
the renormalized mass mR and renormalization constant
ZR are defined by

G−1
σ (p) =

1
ZR

{m2
R + p2 + O(p4)}, (32)

which amounts to

Z−1
R = 1 +

∂Σσ

∂p2

∣∣∣∣
p=0

(33)

m2
R = ZR(m2 + Σσ(0)). (34)

This gives

m2
R = m2 − g

12π

[
43
12

+ 4
(

1
ε

− γ − ln
m2

4πµ2

)
− ln

3e2

g

]

− e2

2π

[
1
ε

− γ − 1 − ln
m2

v

4πµ2

]
, (35)

ZR = 1 +
g

4πm2

[
11
36

− 1
3

(
1
ε

− γ − ln
m2

v

4πµ2

)]
. (36)

In the second scheme the renormalized mass is taken
to be the physical mass mσ, given by the pole of the prop-
agator,

G−1
σ ((imσ, 0)) = 0 , (37)

and the wave function renormalization constant Zσ is the
corresponding residue,

Gσ(p) � Zσ

p2 + m2
σ

for p2 → −m2
σ . (38)

We get

m2
σ = m2 − g

4π


4

3

(
1
ε

− γ − ln
m2

4πµ2

)
− 1

3
ln

3e2

g

+ 2
√

3 arccot
√

3

+
2
3

(
1 − 6 e2

g

)2

√
12 e2

g − 1
arccot

√
12

e2

g
− 1




− e2

2π

[
1
ε

− γ − 2 − ln
m2

v

4πµ2

]
, (39)

Zσ = 1 +
g

4πm2


− 1 +

2
√

3
3

arccot
√

3 (40)

− 1
3

(
1
ε

− γ − ln
m2

v

4πµ2

)
+

(
1 − 6 e2

g

)2

3
(
1 − 12 e2

g

)
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+
2
3

(
1 − 6 e2

g

)(
1 − 12 e2

g − 36 e4

g2

)
(
12 e2

g − 1
) 3

2

× arccot

√
12

e2

g
− 1


 ,

where we assume g ≤ 12e2 for the analytic continuation.
The corresponding propagator in the Rξ-gauge is the

φ1 propagator. Its self-energy in one-loop order is

−Σφ1,Rξ
(p2)

=




p

+

p

+

p

+

p

+

p

+

p

+

p

+
p

+
p

+
p

+
p

+
p




amp

=
1
4π


g


4

3

(
1
ε

− γ − ln
m2

4πµ2

)
− 1

3
ln

3e2

g

+
p2 + m2

3m2 ln ξ

+
3m2

2
√

p4 + 4m2p2
ln

p2 + 2m2 +
√

p4 + 4m2p2

p2 + 2m2 −
√

p4 + 4m2p2

+
m4 − p4

6m2
√

p4 + 4p2 m2
v

ξ

ln
p2 + 2m2

v

ξ +
√

p4 + 4p2 m2
v

ξ

p2 + 2m2
v

ξ −
√

p4 + 4p2 m2
v

ξ




+e2

[
2
(

1
ε

− γ − 2 − ln
m2

v

4πµ2

)
(41)

+
(p2 + 2m2

v)2

2m2
v

√
p4 + 4p2m2

v

ln
p2 + 2m2

v +
√

p4 + 4p2m2
v

p2 + 2m2
v −√p4 + 4p2m2

v

]
 .

This expression is valid if p2 ≥ −4m2, p2 ≥ −4m2
v and

p2 ≥ −4m2
v/ξ are fulfilled. For the renormalized masses

and renormalization constants we obtain

m2
R,Rξ

= m2 − g

12π

[
43
12

+ 4
(

1
ε

− γ − ln
m2

4πµ2

)

− ln
3e2

g
+ξ

g

6e2 + ξ2 g2

108e4

]

− e2

2π

(
1
ε

− γ − 1 − ln
m2

v

4πµ2

)
, (42)

ZR,ξ = 1 +
g

4πm2

[
11
36

+
1
3

ln ξ − ξ2 g2

324e4

]
(43)

in the first scheme, and

m2
φ1

= m2 − g

4π


4

3

(
1
ε

− γ − ln
m2

v

4πµ2

)

−1
3

ln
3e2

g
+ 2

√
3 arccot

√
3

+
2
3

(
1 − 6 e2

g

)2

√
12 e2

g − 1
arccot

√
12

e2

g
− 1




− e2

2π

[(
1
ε

− γ − 2 − ln
m2

v

4πµ2

)]
, (44)

Zφ1 = 1 +
g

4πm2


− 1 +

2
√

3
3

arccot
√

3

+
1
3

ln ξ +

(
1 − 6 e2

g

)2

3
(
1 − 12 e2

g

)

+
2
3

(
1 − 6 e2

g

)(
1 − 12 e2

g − 36 e4

g2

)
(
12 e2

g − 1
) 3

2

× arccot

√
12

e2

g
− 1

+
4

3
√

12 e2

ξg − 1
arccot

√
12

e2

ξg
− 1


 (45)

in the second scheme.
In all cases the renormalized propagator

GR(p) = Z−1 G(p) , (46)

expressed in terms of the renormalized mass, is finite. In the
Rξ-gauge it depends on the gauge parameter ξ. The renor-
malized mass mR,ξ, not being a physical on-shell quantity,
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also depends on ξ. In contrast, the physical mass mφ1 is
independent of ξ as expected.

3.2 The U-gauge limit

Let us consider the relation between the two gauges. We
should expect that the expressions calculated in the Rξ-
gauge go over to those in the U-gauge, if we let ξ → 0.
Indeed, for the masses we see that

lim
ξ→0

mR,ξ = mR (47)

in the first scheme, and

mφ1 = mσ (48)

in the second scheme.
For the renormalization constants, however, the situa-

tion is different. Both ZR, ξ and Zφ1 contain a (log ξ)-term
and appear to diverge as ξ → 0. Here the formal equiv-
alence between the Rξ-gauge in the limit ξ → 0 and the
U-gauge seems to break down.

Let us consider this discrepancy more carefully. The
propagator gets contributions from ghost and φ2-loops,
which are of the form

I = µ2ε

∫
dDk

(2π)D

1

k2 + m2
v

ξ

. (49)

In dimensional regularization this is

I =
1
4π

(
m2

v

4πµ2ξ

)−ε

Γ (ε) . (50)

If expanded for small ε in the usual way, it reads

I =
1
4π

(
1
ε

− γ − log
m2

v

4πµ2 + log ξ + O(ε)
)

, (51)

and we find the disturbing (log ξ)-term. This expansion for
small ε is, however, only applicable for fixed finite ξ. The
ξ-dependence of I is contained in the factor

1
ε

ξε =
1
ε

+ log ξ + O(ε) . (52)

If the limit ξ → 0 is taken first, with a positive ε, one gets
instead

I
ξ→0−→ 0 . (53)

Alternatively, this can be obtained by writing

I = ξ µ2ε

∫
dDk

(2π)D

1
ξk2 + m2

v

(54)

and using the rule (22).
For the other terms involving gauge field loops the inte-

grals are more complicated, but a detailed analysis shows
that similar considerations hold.

We conclude that the limits ε → 0 and ξ → 0 cannot be
interchanged. As a consequence, the Laurent expansion in
ε is not compatible with the limit ξ → 0. In order to arrive
at the U-gauge as a limit of the Rξ-gauge, the limit has
to be taken for fixed non-vanishing ε before the resulting
expressions are expanded around ε = 0.

In general the small ξ- and ε-dependence of a diagram
in D dimensions is of the type ξα(D0−D). The number
D of dimensions has then to be chosen sufficiently small,
D < D0, when taking the limit ξ → 0. In the example
above we have α = 1

2 , D0 = 2.
Taking these considerations into account, the limit ξ →

0 can be taken for the self-energy, and the resulting expres-
sion coincides with the one in the U-gauge. Consequently
the renormalized masses and renormalization constants
also coincide in this limit.

3.3 Gauge field propagator

The inverse gauge field propagator can be decomposed into
a transversal and a longitudinal part:

G−1
µν (p) =

[
δµν − pµpν

p2

] [
m2

v + p2 + Π1(p2)
]

+
pµpν

p2

[
m2

v + ξp2 + Π2(p2)
]
. (55)

In the Rξ-gauge the diagrams

pµ ν pµ ν

p
µ ν

p
µ ν

pµ ν pµ ν

pµ ν pµ ν

(56)

yield

Π1(p2)

= − e2

4π

[
4
(

1
ε

− γ + 1 − ln
m2

4πµ2

)

−p2 + m2 − m2
v

p2 ln
3e2

g

− (p2 + m2 − m2
v)2

p2
√

(p2 + m2 − m2
v)2 + 4p2m2

v
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× ln
p2 + m2 + m2

v +
√

(p2 + m2 − m2
v)2 + 4p2m2

v

p2 + m2 + m2
v −√(p2 + m2 − m2

v)2 + 4p2m2
v

+
6e2

g

(
1
ε

− γ − 2 − ln
m2

v

4πµ2

)]
, (57)

Π2,ξ(p2)

= − e2

4π


4
(

1
ε

− γ − ln
m2

4πµ2

)

+
6e2

g

(
1
ε

− γ − 2 − ln
m2

v

4πµ2

)
+ 2 ln ξ

−p2 − m2 + m2
v

p2 ln
3e2

g

+

√
(p2 + m2 − m2

v)2 + 4p2m2
v

p2

× ln
p2 + m2 + m2

v +
√

(p2 + m2 − m2
v)2 + 4p2m2

v

p2 + m2 + m2
v −√(p2 + m2 − m2

v)2 + 4p2m2
v

−
p2 + 2m2 − 2m2

v

ξ√(
p2 + m2 − m2

v

ξ

)2
+ 4p2 m2

v

ξ

(58)

× ln
p2 + m2 + m2

v

ξ +

√(
p2 + m2 − m2

v

ξ

)2
+ 4p2 m2

v

ξ

p2 + m2 + m2
v

ξ −
√(

p2 + m2 − m2
v

ξ

)2
+ 4p2 m2

v

ξ


 .

The transversal part is manifestly independent of the
gauge parameter ξ and is identical to the one in the U-
gauge. This is generally true, as has been discussed in [12,
13], to all orders in perturbation theory. The renormalized
vector mass and corresponding renormalization factor are
derived from the transversal propagator and are equal, too,
in both gauges. One obtains

m2
R,v = m2

v − e2

2π

[
2
(

1
ε

− γ − ln
m2

4πµ2

)
+ 1
]

− 3e4

4πg


2
(

1
ε

− γ − 2 − ln
m2

v

4πµ2

)

+
1(

1 − 3e2

g

)2 − 2(
1 − 3e2

g

)3 ln
3e2

g




− 9e6

4πg2


− 7(

1 − 3e2

g

)2 +
2(

1 − 3e2

g

)3 ln
3e2

g




+
27e8

4πg3

6(
1 − 3e2

g

)3 ln
3e2

g
, (59)

ZR,v = 1 (60)

+
e2

4πm2
v

[
7m4

v − m2m2
v

(m2 − m2
v)2

+ 2m4
v

m2 + 2m2
v

(m2 − m2
v)3

ln
3e2

g

]

in the first renormalization scheme, and for the pole mass

m2
A = m2

v

− g

12π


ln

3e2

g
+

2
(
1 − 6 e2

g

)2

√
12 e2

g − 1
arctan

√
12

e2

g
− 1




− e2

2π

[
2
(

1
ε

− γ + 1 − ln
m2

4πµ2

)
− ln

3e2

g

]

− 3e4

2πg

[
1
ε

− γ − 2 − ln
m2

v

4πµ2

]
, (61)

Zv = 1

+
g

12πm2
v


ln

3e2

g
− 2

1 − 21 e2

g + 108 e4

g2 − 108 e6

g3(
12 e2

g − 1
) 3

2

× arctan

√
12

e2

g
− 1




+
e2

4πm2
v


− ln

3e2

g
− 2

(
1 − 6 e2

g

)2

12 e2

g − 1


 (62)

in the second scheme, where again we assume g ≤ 12e2.
Using the correct prescription for taking the limit ξ →

0, one finds that the longitudinal part Π2,ξ(p2) goes over
to the result of the U-gauge.

In one-loop order the mixing between the Aµ and φ2
reappears. We do not display our results for the φ2 propa-
gator and the Aµ–φ2 mixing, because the Slavnov–Taylor
identities guarantee that contributions from the longitu-
dinal gauge field, the φ2 field and the ghosts cancel in
physical amplitudes [4, 5].

We also calculated the ghost propagator in the Rξ-
gauge, but do not display the result here. It develops a
pole at a non-vanishing ghost mass. In the limit ξ → 0 the
ghost mass goes to infinity, as it should [3,5], and the ghost
propagator goes over into the static one of the U-gauge.

3.4 Field expectation value

The vacuum expectation value of the Higgs field gets con-
tributions from one-loop diagrams. In the Rξ-gauge one
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gets

vRξ
= v +

p = 0
+

p = 0

+
p = 0

+
p = 0

= µ−εv

{
1 +

g

4πm2

[
−2

3

(
1
ε

− γ − ln
m2

4πµ2

)

+
1
6

ln
3e2

g
− 1

6
ln ξ

]
(63)

− e2

4πm2

(
1
ε

− γ − 2 − ln
m2

v

4πµ2

)}
.

In the proper limit it approaches the result of the U-gauge

vU = v +
p = 0

+
p = 0

= µ−εv

{
1 − g

8πm2

[
1
ε

− γ − ln
m2

4πµ2

]

− e2

4πm2

[
1
ε

− γ − 2 − ln
m2

v

4πµ2

]}
. (64)

The expressions for the field expectation value can be
renormalized by multiplication with an appropriate scalar
field renormalization factor Z−1/2 and expressing the bare
couplings and masses by their renormalized counterparts.
This would require the calculation of three-point vertices
in the one-loop approximation.

The vacuum expectation value of the scalar field is
not independent of the gauge parameter ξ, even after it is
renormalized. This is not unexpected [6, 10, 14, 15], since
it is an off-shell quantity.

4 Conclusion

The two-dimensional abelian Higgs model has been studied
in the Rξ-gauge and in the unitary gauge in the framework
of dimensional regularization, where D = 2−2ε. The prop-
agators and field expectation values have been calculated
on the one-loop level. An apparent discrepancy between
the two gauges has been resolved, and it has been shown
that the results in the unitary gauge can be obtained from
those of the Rξ-gauge by taking the limit ξ → 0 before
removing the dimensional regularization via ε → 0. The
resulting renormalized propagators are finite off-shell. The
unitary gauge appears to be suitable for the calculation of
physical quantities.

It is, however, not possible to obtain the results for
off-shell (ξ-dependent) quantities in the unitary gauge by
taking the limit ξ → 0 of the final renormalized results in
the Rξ-gauge after the regularization has been removed.
For physical ξ-independent quantities this reservation does
not apply.
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